Enhancing False Alarm Reduction Using Voted Ensemble Selection in Intrusion Detection

نویسندگان

  • Yuxin Meng
  • Lam-for Kwok
چکیده

Network intrusion detection systems (NIDSs) have become an indispensable component for the current network security infrastructure. However, a large number of alarms especially false alarms are a big problem for these systems which greatly lowers the effectiveness of NIDSs and causes heavier analysis workload. To address this problem, a lot of intelligent methods (e.g., machine learning algorithms) have been proposed to reduce the number of false alarms, but it is hard to determine which one is the best. We argue that the performance of different machine learning algorithms is very fluctuant with regard to distinct contexts (e.g., training data). In this paper, we propose an architecture of intelligent false alarm filter by employing a method of voted ensemble selection aiming to maintain the accuracy of false alarm reduction. In particular, there are four components in the architecture: data standardization, data storage, voted ensemble selection and alarm filtration. In the experiment, we conduct a study involved three machine learning algorithms such as support vector machine, decision tree and k-nearest neighbor, and use Snort, which is an open source signature-based NIDS, to explore the effectiveness of our proposed architecture. The experimental results show that our intelligent false alarm filter is effective and encouraging to maintain the performance of reducing false alarms at a high and stable level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering

Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...

متن کامل

HFSTE: Hybrid Feature Selections and Tree-Based Classifiers Ensemble for Intrusion Detection System

Anomaly detection is one approach in intrusion detection systems (IDSs) which aims at capturing any deviation from the profiles of normal network activities. However, it suffers from high false alarm rate since it has impediment to distinguish the boundaries between normal and attack profiles. In this paper, we propose an effective anomaly detection approach by hybridizing three techniques, i.e...

متن کامل

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

BeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms

Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...

متن کامل

Ensemble Classifiers for Network Intrusion Detection System

Two of the major challenges in designing anomaly intrusion detection are to maximize detection accuracy and to minimize false alarm rate. In addressing this issue, this paper proposes an ensemble of one-class classifiers where each adopts different learning paradigms. The techniques deployed in this ensemble model are; Linear Genetic Programming (LGP), Adaptive Neural Fuzzy Inference System (AN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013